Вход
Быстрая регистрация
Если вы у нас впервые: О проекте FAQ
4

Задача для третьего класса царской гимназии. Как решить?

SIZIF [17.4K] 8 лет назад

Два парома отчаливают одновременно от противоположных берегов реки и встречаются на расстоянии 900 метров от левого берега. Прибыв к месту назначения, каждый паром сразу же отправляется обратно. Во второй раз паромы вновь встречаются в 300 метрах от правого берега. Чему равна ширина реки? Паромы двигались с постоянными скоростями.

1200 – это неправильный ответ :)

категория: образование
In-s [12.5K]
А место назначения у них где было? в 900-стах метрах от левого берега?  8 лет назад
SIZIF [17.4K]
У парома место назначения берег.  8 лет назад
комментировать
4

Это действительно очень красивая задача по арифметике - всего навсего, одно неизвестное: ширина реки Х!

И так:

текст при наведении

Будем считать, что первый паром красный, а второй – зелёный.

Когда паромы встречаются первый раз, сумма пройденных ими расстояний равна ширине реки Х. Когда каждый из них причаливает к противоположному берегу, эта сумма равна удвоенной ширине реки 2Х, а когда они встречаются второй раз, сумма пройденных ими расстояний в три раза больше ширины реки 3Х. Поскольку оба парома двигаются с постоянной скоростью в течение одного и того же промежутка времени, можно утверждать, что к моменту второй встречи каждый из них прошел расстояние втрое больше пройденного к моменту первой встречи. Поскольку красный паром прошел до первой встречи 900 м, к моменту второй встречи все пройденное им расстояние равно 900 х 3 = 2700 м. Из рисунка видно, что это на 300 м больше ширины реки, поэтому из 2700 надо вычесть 300. В результате получаем 2400 м - искомую ширина реки Х .

К решению задачи можно подойти и иначе:

Ширина реки = Х. Вначале отношение расстояний, пройденных паромами = (Х- 900)/900. Ко второй встрече оно будет составлять (2Х - 300)/(Х + 300). Поскольку эти отношения равны, из них легко вычисляется ширина реки Х = 2400 м.

Или по третьему варианту:

Красный паром прошёл до первой встречи Х – 900 м, а до второй в трое больше 3 х (Х - 900) м. Зелёному парому, после второй встречи осталось до берега Х - 300 м. А раз так то можно приравнять: 3 х (Х - 900) = 2 х Х – 300. Откуда получаем те-же 2400 м – искомую ширину реки.

система выбрала этот ответ лучшим
5

Честное пионерское, в предыдущие ответы не подсматривал - сам решил ;-)

Расстояние от одного берега до другого я обозначил, как х.

До первой встречи паромы проплыли первый 900 метров, а второй соответственно ( х - 900 ).

До второй встречи первый паром прошёл ( х + 300 ), а второй ( 2х - 300 ) метров.

Так как скорости паромов постоянны, то отношение расстояний пройденных каждым паромом до первой встречи к расстоянию пройденному каждым паромом до второй встречи должны быть равны:

то есть 900 / ( х + 300 ) = ( х - 900 ) / ( 2х - 300 )

900 ( 2х - 300 ) = ( х - 900 ) ( х + 300 )

1800х - 270000 = х² - 900х + 300х - 270000

х² - 2400х = 0

х = 0 ( не подходит по условию, т.к. между берегами не может быть 0 метров ) или х = 2400 метров расстояние между двумя берегами.

Кстати, если бы в задаче не было слов, что де "Прибыв к месту назначения, каждый паром сразу же отправляется обратно", то в задаче могло бы быть ещё одно решение - в таком варианте первый паром так и не достиг бы правого берега:

до первой встречи первый паром прошёл бы те же 900 метров, а второй паром ( х - 900 ) метров, тогда как ко второй встрече первый паром прошёл бы ( х - 300 ), а второй ( х + 300 ). Равенство тогда бы приняло вид:

900 / ( х - 300 ) = ( х - 900 )/( х + 300 )

900 ( х + 300 ) = ( х - 900 ) ( х - 300 )

900х + 270000 = х² - 900х - 300х + 270000

х² - 2100х = 0

х = 0 ( не подходит по условию, т.к. между берегами не может быть 0 метров ) или х = 2100 метров

Но повторюсь, в этом случае первый паром не достигнет второго берега до второй встречи с другим паромом, а значит

Ответ: ширина реки равна 2400 метров

5

Третьеклассники царской гимназии были намного умнее современных школьников, да что там царской гимназии, даже в народной школе в 1895 году. Об этом нам сообщает картина Богданова-Бельского "Устный счет", где формулу с пятью слагаемыми в квадрате поделенную на 365, дети того же возраста решают в уме. Смотри в приложении. Наверняка задачу про два парома дети также решали в уме - исходя из удвоения пройденного расстояния. Из условия задачи известно что допустим 1й паром до 1встречи преодолел расстояние в 900 метров, а до 2встречи --- ширина реки +300 метров, то есть втрое больше 900 х 3 = 2700 м, это - ширина реки плюс 300 метров. Уберите эти "левые" 300 метров и увидите искомую ширину реки 2400 =2700 - 300, для бв//с)

3

Нашёл вопрос совершенно случайно - просматривая совсем другой вопрос (и параллельно болтая по Скайпу с другом). Задача понравилась. Начал читать текст задач другу. Тот: "Да что тут решать?" - схватил лист бумаги и давай калякать формулы. И через пять минут: "Вот те уравнение - решишь мигом". Ты что, говорю, какие квадратные уравнения - третий класс царской гимназии! "А иначе не решить!" А если подумать?

До сих пор бурчит под нос "Сейчас, сейчас...", что-то чертит, пишет и зачёркивает...

А ларчик просто открывается. (Я спецом "перепрыгнул" ответы не читая - взгляну потом).

Два парома до первой встречи вместе проплыли какой путь? Правильно, ширину реки. А до второй встречи? Три ширины реки. Непонятно? Каждый проплыл к противоположному берегу - имеем вместе две ширины реки, правильно? Плюс плыли до встречи - ещё одна ширина реки.

Отсюда следует, что до второй встречи паромы плыли в три раза дольше, чем до первой.

Паром от левого берега до первой встречи проплыл 900 м, значит до второй 900 х 3 = 2700 м. А это - ширина реки плюс 300 метров. И вычтя эти 300 м из пути "левого" парома (2700 - 300 = 2400), получаем: ширина реки равна 2400 метров.


Ну вот теперь можно и ответы других авторов посмотреть...

Не поймут решения с "иксами" третьеклассники царской гимназии, не поймут-с!

3

Да, берега попутал, до второй встречи "левый" паром пройдет 900 метров + 300 метров +Х(скорость второго парома) метров, то есть Х+1200 метров, "правый" паром пройдет (Х+900)*2-300 то есть 2Х+1500. Вместе за это время они пройдут расстояние в 3 ширины реки то есть потратят 3 периода времени. Значит "левый" пройдет за 3 периода 2700 метров, что равно Х+1200, следовательно Х = 1500 а ширина реки 1500 + 900 = 2400 метров.

svetoff и Викуля абсолютно правы, но по моему уровень математики в решении Викули, гораздо выше уровня 3 класса даже царской гимназии, хотя кто знает может они там уже и решали квадратные уравнения.

[пользоват­ель заблокиров­ан] [3K]
Обычный 3-классник задачу не решит, проверено. Да и обычный 7-классник вряд ли. Такая задача была предложена 7-классникам, которые являлись учениками МАНа (Малой академии наук). Эти ребята с задачей справились )))  8 лет назад
комментировать
1

То, что оба парома прошли в итоге расстояние, равное 3 ширинам реки х-3х это можно понять из схемы движения паромов поперёк реки.Главная идея решения, что время обоих паромов до первой встречи, и до второй встречи равны.И то, что скорость 1-го парома была всё время постоянна, и скорость 2-го парома тоже постоянна, то можно составить некоторые пропорции.1-й паром до 1-й встречи прошёл.900 км, а второй за это же время:(х-900).

v1-скорость 1 парома,v2-скорость 2-го парома.

1-й паром прошёл до 1 встречи:(х-900+300)=(х-600),а 2-й до 2-й встречи прошёл (х+900-300)=(х+600), получим уравнение из пропорции:

900/(х-900)*v2/v1=([-600)/([+600*v2/v1,сократив отношения скоростей и перемножив, получим квадратное уравнение x^2-2400)=0, получим реальное решение х=2400.

Ответ:ширина реки 2400 км.

1

Эта задача при таких данных не имеет решения. При первой встрече паром отплывший от левого берега проплыл 900 метров, а паром отплывший от правого берега проплыл Х-900, где Х ширина реки. Получаем уравнение 900=Х-900, откуда Х=1800 метров, и первая встреча произошла на середине реки, паромы плыли с одинаковой скоростью. Тогда паром отплывший от левого берега должен проплыть до второй встречи 900+300=1200 метров, паром отплывший от правого берега должен проплыть 900+600=1500 метров. Не выполняется условие постоянства скоростей. Задача может иметь решение если паромы всегда встречаются по средине реки,а ширина реки Х=1800 метров.

1

у меня тоже 2400. Ширина реки z. До первой встречи за одно и то же время первый проплыл 900, второй (z-900). Вторая встреча - первый проплыл (z-900)+300, а второй 900+(z-300). Время одинаково, значит отношение скорости пропорционально пройденному расстоянию: 900/(z-900)=(z-600)/(z+600), ну и z=2400.

Вообщем я так намудрила, вообще не люблю задачи на "движение", все эти скорости, время, еще направления течения - жуть.

0

Не очень довольна своим результатом, истратила 30 минут на решения задачи школьников..))

текст при наведении

Уже не очень помню, как примерно правильно решаются такие задачи, но я решила таким методом каким смогла. Ответ мой совпадает с другими ответами, но метод решения других участников я не понимаю.

0

У меня получилось, что ширина реки равна 2400 метров. Честно говоря, математику я не очень люблю. Поэтому задачу решила, скорее, интуитивно. Поэтому решения к ней не прилагаю. Возможно, что мой ответ и не правильный.

0

Паром, первоначально отчаливающий от левого берега за один период времени проходит 900 метров а за два периода он проходит ширину реки и 300 метров. Тогда логично что ширина реки равна 900*2-300=1500 метров.

In-s [12.5K]
Мне кажется, не так. Если ширина 1500 м, то первый паром до первой встречи проходит 900 м, а второй - 600 м, т.е. скорость 1 парома больше. От первой встречи до второй 1 паром проходит 600+300= 900 м, а 2 паром 900+1200=2100, т.е. не стыкуется, скорость паромов же постоянна.  8 лет назад
комментировать
Знаете ответ?
Есть интересный вопрос? Задайте его нашему сообществу, у нас наверняка найдется ответ!
Делитесь опытом и знаниями, зарабатывайте награды и репутацию, заводите новых интересных друзей!
Задавайте интересные вопросы, давайте качественные ответы и зарабатывайте деньги. Подробнее..
регистрация
OpenID